The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
尖峰神经网络(SNNS)模仿大脑计算策略,并在时空信息处理中表现出很大的功能。作为人类感知的基本因素,视觉关注是指生物视觉系统中显着区域的动态选择过程。尽管视觉注意力的机制在计算机视觉上取得了巨大成功,但很少会引入SNN中。受到预测注意重新映射的实验观察的启发,我们在这里提出了一种新的时空通道拟合注意力(SCTFA)模块,该模块可以通过使用历史积累的空间通道信息来指导SNN有效地捕获潜在的目标区域。通过在三个事件流数据集(DVS手势,SL-Animals-DVS和MNIST-DVS)上进行系统评估,我们证明了带有SCTFA模块(SCTFA-SNN)的SNN不仅显着超过了基线SNN(BL-SNN)(BL-SNN)(BL-SNN)以及其他两个具有退化注意力模块的SNN模型,但也通过现有最新方法实现了竞争精度。此外,我们的详细分析表明,所提出的SCTFA-SNN模型对噪声和出色的稳定性具有强大的稳健性,同时保持了可接受的复杂性和效率。总体而言,这些发现表明,适当纳入大脑的认知机制可能会提供一种有希望的方法来提高SNN的能力。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
对于诊断各种疾病的诊断,对睡眠阶段进行分类至关重要。但是,现有的自动诊断方法主要采用“金标准”局部脑图(EEG)或医院中多摄像机仪(PSG)机器的其他单型模式传感信号,这些信号昂贵,导入且因此不适合保健点监测在家。为了在家中启用睡眠阶段监控,我们在本文中分析了红外视频与脑电图信号之间的关系,并提出了一项新任务:通过将有用的知识从EEG信号提炼到视觉视频,使用红外视频对睡眠阶段进行分类。为了为该应用程序建立可靠的跨模式基准,我们开发了一个新的数据集,称为通过红外视频和脑电图($ s^3ve $)看到您的睡眠阶段。 $ s^3ve $是一个大型数据集,包括用于睡眠阶段分类的同步红外视频和脑电图信号,包括105个主题和154,573个视频剪辑,长度超过1100小时。我们的贡献不仅限于数据集,而且还涉及一种新型的跨模式蒸馏基线模型,即结构感知的对比度蒸馏(SACD),以将脑电图知识提升为红外视频特征。 SACD在我们的$ S^3ve $和现有的跨模式蒸馏基准上都达到了最先进的表演。基准方法和基线方法都将被释放给社区。我们希望在睡眠阶段分类中提高更多注意力并促进更多的发展,更重要的是,从临床信号/媒体到传统媒体的跨模式蒸馏。
translated by 谷歌翻译
合成健康数据在共享数据以支持生物医学研究和创新医疗保健应用的发展时有可能减轻隐私问题。基于机器学习,尤其是生成对抗网络(GAN)方法的现代方法生成的现代方法继续发展并表现出巨大的潜力。然而,缺乏系统的评估框架来基准测试方法,并确定哪些方法最合适。在这项工作中,我们引入了一个可推广的基准测试框架,以评估综合健康数据的关键特征在实用性和隐私指标方面。我们将框架应用框架来评估来自两个大型学术医疗中心的电子健康记录(EHRS)数据的合成数据生成方法。结果表明,共享合成EHR数据存在公用事业私人关系权衡。结果进一步表明,在每个用例中,在所有标准上都没有明确的方法是最好的,这使得为什么需要在上下文中评估合成数据生成方法。
translated by 谷歌翻译
图形神经网络(GNN)是具有无核数据的应用的有前途的方法。但是,具有数亿节点的大规模图上的培训GNN既是资源又是耗时的。与DNN不同,GNN通常具有更大的内存足迹,因此GPU内存能力和PCIE带宽是GNN培训中的主要资源瓶颈。为了解决此问题,我们提出分叉:一种图形量化方法,通过显着减少内存足迹和PCIE带宽要求来加速GNN训练,以便GNN可以充分利用GPU计算功能。我们的关键见解是,与DNN不同,GNN不太容易发生量化引起的输入特征的信息丢失。我们确定图形特征量化中的主要准确性影响因素,从理论上证明,分叉训练会收敛到网络,在该网络中,损失在未压缩网络的最佳损失的$ \ epsilon $之内。我们使用几种流行的GNN模型和数据集对分叉进行了广泛的评估,包括最大的公共图数据集MAG240M上的图形。结果表明,分叉达到30以上的压缩率,并在边际准确性损失的情况下提高了GNN训练速度200%-320%。特别是,分叉在一小时内仅使用四个GPU在MAG240M上的训练图来实现记录。
translated by 谷歌翻译
随着深度卷积神经网络的兴起,对象检测在过去几年中取得了突出的进步。但是,这种繁荣无法掩盖小物体检测(SOD)的不令人满意的情况,这是计算机视觉中臭名昭著的挑战性任务之一,这是由于视觉外观不佳和由小目标的内在结构引起的嘈杂表示。此外,用于基准小对象检测方法基准测试的大规模数据集仍然是瓶颈。在本文中,我们首先对小物体检测进行了详尽的审查。然后,为了催化SOD的发展,我们分别构建了两个大规模的小物体检测数据集(SODA),SODA-D和SODA-A,分别集中在驾驶和空中场景上。 SODA-D包括24704个高质量的交通图像和277596个9个类别的实例。对于苏打水,我们收集2510个高分辨率航空图像,并在9个类别上注释800203实例。众所周知,拟议的数据集是有史以来首次尝试使用针对多类SOD量身定制的大量注释实例进行大规模基准测试。最后,我们评估主流方法在苏打水上的性能。我们预计发布的基准可以促进SOD的发展,并产生该领域的更多突破。数据集和代码将很快在:\ url {https://shaunyuan22.github.io/soda}上。
translated by 谷歌翻译
因果推论在电子商务和精确医学等各个领域都有广泛的应用,其性能在很大程度上取决于对个体治疗效果(ITE)的准确估计。通常,通过在其各个样品空间中分别对处理和控制响应函数进行建模来预测ITE。但是,这种方法通常会在实践中遇到两个问题,即治疗偏见引起的治疗组和对照组之间的分布分布以及其人口规模的显着样本失衡。本文提出了深层的整个空间跨网络(DESCN),以从端到端的角度进行建模治疗效果。 DESCN通过多任务学习方式捕获了治疗倾向,反应和隐藏治疗效果的综合信息。我们的方法共同学习了整个样品空间中的治疗和反应功能,以避免治疗偏见,并采用中间伪治疗效应预测网络来减轻样品失衡。从电子商务凭证分销业务的合成数据集和大规模生产数据集进行了广泛的实验。结果表明,DESCN可以成功提高ITE估计的准确性并提高提升排名的性能。发布生产数据集和源代码的样本是为了促进社区的未来研究,据我们所知,这是首个大型公共偏见的因果推理数据集。
translated by 谷歌翻译
形状信息在医学图像中分割器官方面是强大而有价值的先验。但是,当前大多数基于深度学习的分割算法尚未考虑形状信息,这可能导致对纹理的偏见。我们旨在明确地对形状进行建模并使用它来帮助医疗图像分割。先前的方法提出了基于变异的自动编码器(VAE)模型,以了解特定器官的形状分布,并通过将其拟合到学习的形状分布中来自动评估分割预测的质量。我们旨在将VAE纳入当前的分割管道中。具体而言,我们提出了一种基于伪损失和在教师学习范式下的VAE重建损失的新的无监督域适应管道。两种损失都是同时优化的,作为回报,提高了分割任务性能。对三个公共胰腺细分数据集以及两个内部胰腺细分数据集进行了广泛的实验,显示了一致的改进,骰子分数中至少有2.8分的增益,这表明了我们方法在挑战无监督的域适应性方案中对医学图像分割的有效性。我们希望这项工作能够在医学成像中提高形状分析和几何学习。
translated by 谷歌翻译
3D场景理解的最新进展探索了视觉接地(3DVG),以通过语言描述定位目标对象。但是,现有方法仅考虑整个句子和目标对象之间的依赖性,从而忽略了上下文与非目标之间的细粒度关系。在本文中,我们将3DVG扩展到更可靠和可解释的任务,称为3D短语意识接地(3DPAG)。 3DPAG任务旨在通过明确识别所有与短语相关的对象,然后根据上下文短语进行推理,旨在在3D场景中定位目标对象。为了解决这个问题,我们在可用的3DVG数据集中的170k句子中标记了大约400k短语级别的注释,即NR3D,SR3D和ScanRefer。通过利用这些开发的数据集,我们提出了一个新颖的框架,即Phraserefer,该框架通过短语对象对准优化以及短语特异性预训练来进行短语感知和对象级表示学习。在我们的环境中,我们将先前的3DVG方法扩展到短语感知方案,并提供指标以衡量3DPAG任务的解释性。广泛的结果证实,3DPAG有效地提高了3DVG,而Phraserefer分别在SR3D,NR3D和SCANREFER上分别达到三个数据集(即63.0%,54.4%和55.5%)的最先进。
translated by 谷歌翻译